

DEPARTMENT OF PURE AND APPLIED CHEMISTRY

Visca, Baybay City, Leyte, PHILIPPINES Telefax: +63 563 7747 Email: dopac@vsu.edu.ph Website: www.vsu.edu.ph

OUTCOMES-BASED EDUCATION (OBE) COURSE SYLLABUS

Chem 138 Biochemistry II (For BS Biotechnology)

UNIVERSITY INFORMATION

Vision of the University

A globally competitive university for science, technology, and environmental conservation

Mission of the University

Development of a highly competitive human resource, cutting-edge scientific knowledge and innovative technologies for sustainable communities and environment.

VSU Quality Policy Statement

The Visayas State University (VSU), a globally competitive university of science and technology and environmental conservation, is created by law to develop highly competitive human resource, cutting- edge scientific knowledge and innovative technologies for sustainable communities and environment.

Towards this end, we, at the Visayas State University, commit to:

- Produce highly competent, quality and world-class manpower in science and technology, especially for agriculture, environmental management and industry who are proficient in communication skills, critical thinking and analytical abilities;
- Generate and disseminate relevant knowledge and technologies that lead to improved productivity, profitability and sustainability in agriculture, environment and industry; and
- Satisfy the needs and applicable requirements of the industry, the community and government sectors who are in need of quality graduates and technology ready for commercialization through the establishment, operation, maintenance and continual improvement of a Quality Management System (QMS) which is aligned with the requirements of ISO 9001:2015.

It shall be the policy of the university that the quality policies and procedures are communicated to and understood by all faculty, staff, students and other stakeholders and that the system be continually improved for its relevance and effectiveness.

> ARDO E. TULIN resident

4. Quality Goals of the College of the College of Arts and Sciences

- a. To produce quality manpower and graduates in biology, biotechnology, chemistry, English, liberal arts and behavioral sciences, mathematics, physics and statistics to serve the development needs of the region.
- To uplift the economic well-being of the region through relevant R and D and extension programs.
- c. Enhance regional development of the Visayas for regional competitiveness.

5. Quality Objectives of the Department of Pure and Applied Chemistry

- To produce highly qualified and skilled Chemists and Chemical Technicians for the industry and academia.
- To generate relevant knowledge and technologies through basic and applied multi- and inter-disciplinary researches.
- c. To achieve strong linkages and cooperation with domestic and international institutions and agencies involved in the pursuit of sustainable development.

II. PROGRAM INFORMATION

1.	Name of the Program	BS in Biotechnology
2.	CHED CMO Reference	None (COPC No. 142 granted on Nov. 24, 2020)
3.	BOR Approval	BOR Resolution No. 76, s. 2006; Revised Curriculum BOR Resolution No. 80, s. 2018

4. Program Educational Objectives and Relationship to Institution Mission

Drogram Educational Objectives	N	lissio	n*
Program Educational Objectives	a	b	C
 Provide students with fundamental knowledge and laboratory skills necessary for application to a wide range of biotechnological production processes 	1	1	1
 Engage students in laboratory and coursework and research experience in areas such as plant and animal biotechnology, industrial biotechnology, microbial technology, genetic engineering, biochemical engineering, bioinformatics, environmental biotechnology and the biomedical field. 	1	1	1
 Expose students to current biotechnological problems so that they will understand and appreciate the role that molecular biology and biotechnology can play in solving them. 	1	٧	1

^{*}a - development of a highly competitive human resource, b - cutting-edge scientific knowledge, c - innovative technologies for sustainable communities and environment

III. COURSE INFORMATION

1. Course Code	Chem 138	
2. Course Title	Biochemistry 2 Lecture	
3. Pre-requisite	Chem 137 - Biochemistry 1 Lec Chem 137.1 - Biochemistry 1 Laboratory	
4. Co-requisite	Chem138.1 – Biochemistry II Laboratory	
5. Credit	3.0 units	
6. Semester Offered	Second Semester	

Vision: Mission: A globally competitive university for science, technology, and environmental conservation. Development of a highly competitive human resource, cutting-edge scientific knowledge and innovative technologies for sustainable communities and environment. Page 2 of 18 TP-IMD-08 V02 11-14-2022

7. Number of hours	3 hrs / week
8. Course Description	Basic chemistry of processes involved in the flow of biological information, the principles of metabolism and the chemistry of the primary metabolic pathways.

Pro	rogram Outcomes (POs)		Program Educationa Objectives		
		1	2	3	
a.	Produce graduates with excellent laboratory and practical skills in biotechnology necessary for a wide range of biotechnological production processes	1	1	1	
b.	Prepare graduates for advanced study in the life sciences and for positions in biotechnology industry	1	1	1	
C.	Harness the theoretical and analytical skills of students to develop new industrial production systems and novel research ideas based on fundamental principles of biotechnology	٧	1	1	

After completing this course, the student must be able to	Program Outcomes (
perform the following COs:	а	b	C	
CO1: explain how living organisms extract energy from the surroundings to perpetuate life.	E	D	D	
CO2: explain how organisms store and transmit genetic information to grow and to reproduce accurately.	E	D	D	
CO3: apply the key concepts in biochemistry to explain its practical applications in the field of agriculture, medicine, pharmacy, and allied fields	D	D	D	
CO4: present awareness of major issues at the forefront of biochemistry	D	D	D	
CO5: use computers as information and research tools in biochemistry	E	D	D	
CO6: list, evaluate, and use primary sources of biochemical information to discuss issues and formulate choices as socially responsible chemists in the national and global communities	1	D	D	
CO7: discuss issues and formulate choices as socially responsible biotechnologists in the national and global communities	E	D	D	

Legend: I – Introductory, E – Enabling, D – Demonstrative
Each letter indicates the expected level of competency that each CO should provide for each
PO.

Mank	Tanias	Learning	Teaching an		Assess- ment Tasks
Week	Topics	Outcomes	Teaching Activities	Learning Activities	mentiasks
Class (Orientation				
	OBE Course Syllabus (including VSU Vision Mission, and Quality Policy Statement)	Explain their role in the attainment of VSU's VMGO	Computer assisted lecture	Role play through a video	Not necessarily graded:
1	Class Policies Requirements	Get to know each students and instructor	Q & A for clarification, setting of expectation		Oral recitation/ Quiz
	Grading System and Activities Learning Guide /	Explain the tips in optimizing their learning process, and in getting	s, and getting-to- know-each other		
	Instructional Workbook / Laboratory Manual	good grades	Class interaction		
	Submission of requirements	Discuss the expectations from students and the	Sharing of Ideas		
	Values Integration:	course	Feedbacks		
			VSUEE/VC* : Familiarizati on of the virtual classroom		
CO1: F:	 	stract energy from the	surroundings	to perpetuate	life
1,2	Module No. 1 Intermediary Metabolism Lesson 1 Phases of metabolism Anabolism	At the end of this unit, the students are expected to appreciate the importance of metabolism	Powerpoint presentation Interactive discussion	Flow diagrams	Worksheet Recitation/ Quiz Exam
	Catabolism Lesson 2 Overview of Metabolism Digestive system and digestive juices Hydrolytic enzymes Stages of digestion Salivary digestion Gastric digestion Intestinal digestion	✓ give an overview of metabolism ✓ trace the pathway of the digestion of the following basic foodstuffs: starch, fats, proteins ✓ identify the digestive juices and the			

		✓ describe the following: action of salivary amylase on starch, action of the proteolytic enzymes in the stomach, effect of free HCI in gastric digestion, action of intestinal enzymes in the completion of digestion, the components of bile and their function in the digestion of fats ✓ identify the end products of digestion of starch, fats and proteins state the role of the end products of digestion in			
3	Module 2 The Importance of Energy Changes and Electron Transfer in Metabolism Lesson 1 The nature of metabolism The role of oxidation and reduction in metabolism Classification of blochemical reactions Lesson 2 Oxidation-reduction Group transfer Hydrolysis Nonhydrolytic cleavage	ransmit genetic inform define metabolism differentiate anabolism and catabolism relate metabolism with redox reactions give examples of redox reactions occurring in	Powerpoint presentation Interactive discussion	Writing and classifying biochemic al reactions Problem solving	Worksheet Recitation/ Quiz Exam

04: F	Isomerization and rearrangement Bond formation reactions using energy from ATP Coenzymes in biologically important oxidation-reduction reactions Coupling of production and use of energy	, and allied fields. ues at the forefront of b	iochemistry.	ons in the fiel	d of
4,5	Module 3. Glycolysis Lesson 1 The overall pathway of glycolysis Lesson 2 Conversion of six-carbon glucose to three-	✓ define glycolysis and show its overall reactions	Powerpoint presentation	Tracing glycolysis and understan	Worksheet Recitation/ Quiz

Lesson 6 Entry of other carbohydrates into glycolysis Dietary carbohydrates (starch, glycogen, maltose, sucrose, lactose) Fructose, galactose, glycerol	irreversible steps ✓ classify the type of biochemical reaction involved in each step ✓ identify the control points in glycolysis ✓ state the fate of pyruvate during anaerobic metabolism and explain its significance ✓ calculate and compare the ATP production in aerobic and anaerobic glycolysis outline the metabolism of other carbohydrates (i.e. dietary carbohydrates and fructose, galactose and glycerol) by glycolysis		
---	---	--	--

FIRST LONG EXAMINATION ON MODULE NOS. 1-3

CO3: Apply the key concepts in biochemistry to explain its practical applications in the field of agriculture, medicine, pharmacy, and allied fields.

CO4: Present awareness of major issues at the forefront of biochemistry.

CO5: use computers as information and research tools in biochemistry

6	Module 4.0 The Citric Acid Cycle	and research (odis in big			
	Lesson 1 The central role of the CAC in metabolism Lesson 2 Overall pathway of the CAC Lesson 3 Conversion of pyruvate to acetyl Co-A Lesson 4 Individual reactions of the CAC Lesson 5 Energetics and control of the CAC	✓ define citric acid cycle ✓ identify the role of mitochondria in aerobic metabolism ✓ connect the glycolysis pathway to citric acid cycle ✓ trace the production of	Powerpoint presentation Interactive discussion	Tracing the CAC and understan ding its role in metabolic/ genetic diseases interrelatin g CAC and glycolysis	Worksheet Recitation/ Quiz Exam

	Lesson 6 The glyoxylate cycle: a related pathway	energy and carbon dioxide in the CAC calculate the net gain of ATP molecules produced in the cycle identify the end product in the total combustion of glucose and the starting material that enters the CAC			
		✓ Give the importance of glyoxylate pathway in plants			
04: P	pply the key concepts in bioche priculture, medicine, pharmacy, resent awareness of major issu- se computers as information ar Module 5. Electron	and allied fields. les at the forefront of b	iochemistry.	ons in the field	d of
7	Transport (ET) and Oxidative Phosphorylation (OP) Lesson 1 The role of ET in metabolism Reduction potentials in	✓ define ET chain ✓ state the role of ET chain in metabolism	Powerpoint presentation	Tracing the ET and understan ding its	Worksheet Recitation/ Quiz Exam
	the ET Chain Organization of ET complexes The connection between ET and phosphorylation The mechanism of coupling in OP Respiratory inhibitors	✓ identify the hydrogen acceptors from the metabolite ✓ differentiate the action of the hydrogen acceptors	Video clip	role in metabolic/ genetic diseases Interrelatin g TE to	

co4: Pr	pply the key concepts in bioch riculture, medicine, pharmacy esent awareness of major iss re computers as information a Module 6. Storage Mechanisms and Control in Carbohydrate Metabolism	FAD identify inhibitors that can block the chain nemistry to explain its p y, and allied fields. sues at the forefront of i	piochemistry.	ons in the field	d of
		The state of the s			

including the enzymes involved vexplain how glycogen metabolism is controlled, and relate it to diabetes mellitus	Interrelatin g the metabolic pathways of carbohydr ate metabolis m
including the enzymes involved explain how glycogen metabolism is controlled, and relate it to diabetes mellitus define gluconeogenesi s and describe its role in biological systems identify smaller biomolecules that can be used to	Writing overall reactions and net reactions Calculatin g ATP yield
synthesize glucose / identify the three glycolytic steps bypassed # in gluconeogenesi s / compare and contrast glycolysis, glycogenesis, glycogenolysis and gluconeogenesi	
differentiate pentose phosphate pathway (PPP) from other carbohydrate metabolic pathways identify the importance of PPP in biological systems	

11	obal communities. Module 7. Photosynthesis Lesson 1 Site of Photosynthesis Lesson 2 Photosystems I and II and the Light Reactions of Photosynthesis	✓ rationalize how the structure of chloroplast affects photosynthesis ✓ compare and contrast	Powerpoint presentation Interactive discussion Video clip	Tracing photosynt hesis and understan ding its role in plants	Worksheet Recitation/ Quiz Exam
	Lesson 3 Photosynthesis and ATP Production Inhibiting Photosynthesis	chlorophyll, hemoglobin and myoglobin in terms of structure trace the ATP production of photosynthesis relate photosynthesis with ET chain in terms of ATP production	Video diip	Illustrating photosyst ems I & II Writing overall reactions of photosynt hesis	

Vision: Mission: A globally competitive university for science, technology, and environmental conservation. Development of a highly competitive human resource, cutting-edge scientific knowledge and innovative technologies for sustainable communities and environment. Page 11 of 18 TP-IMD-08 V02 11-14-2022 No. 27-10

	Lesson 2 Energy yield from the oxidation of fatty acids Lesson 3 Catabolism of unsaturated fatty acids and odd-carbon fatty acids Lesson 4 Ketone bodies Lesson 5 Fatty acid Biosynthesis Lesson 6 Synthesis of acylglycerol and compound lipids Lesson 7 Cholesterol biosynthesis	and fatty acids, including the role of the different lipoproteins (HDL, LDL, VLDL) Identify the hormones involved in the metabolism of dietary triacylglycerols calculate the ATP yield in β-oxidation Identify the end product of β-oxidation relate β-oxidation relate β-oxidation relate the production and significance of ketone bodies to β-oxidation trace the biosynthesis of fatty acids, triacylglycerol and cholesterol and identify its control points	Interactive discussion Video clip	biosynthe sis, cholestero I biosynthe sis and understan ding their role in metabolic/ genetic diseases Interrelatin g β- oxidation to CAC, ET chain and ketone bodies Writing overall reactions of photosynt hesis Calculatin	Quiz Exam
	pply the key concepts in bioche			g ATP yield	
CO4: P	resent awareness of major issues computers as information and Module 9. The Metabolism of Nitrogen Lesson 1 An Overview on the Metabolism of Nitrogen Lesson 2 Nitrogen fixation Lesson 2 Amino acids Biosynthesis Lesson 3 Amino acids Catabolism	describe the process of nitrogen fixation I define transamination reaction I trace the biosynthesis of the following families of		Tracing nitrogen fixation, amino acid biosynthe sis and catabolis m, purine/pyri midine	Worksheet Recitation/ Quiz Exam
	Urea cycle Lesson 4 Purine and	amino acids: glutamate, aspartate, serine.		biosynthe sis	

understan ding their ✓ explain why Lesson 5 Purine and role in glutamate Pyrimidine Catabolism plays a major metabolic/ role in the genetic biosynthesis diseases of amino acids Interrelatin √ differentiate g nitrogen between metabolis glucogenic m to CAC and ketogenic amino acids Writing and give overall examples of reactions each and net √ describe the reactions urea cycle and state its importance Calculatin √ write an g ATP equation for yield the net reaction of the urea cycle Show how urea is linked to the CAC THIRD LONG EXAMINATION COVERING MODULES 8 & 9

CO3: Apply the key concepts in biochemistry to explain its practical applications in the field of agriculture, medicine, pharmacy, and allied fields.

CO4: Present awareness of major issues at the forefront of biochemistry.
CO5: use computers as information and research tools in biochemistry.
CO6: list, evaluate and use primary sources of biochemical information.

CO7: discuss issues and formulate choices as socially responsible biotechnologies in the national and global communities

16	Module 10 The Central Dogma				
	Lesson 1 Replication of DNA Flow of genetic information in the cell Denaturation of DNA Lesson 2 Transcription of RNA Lesson 3 Translation (synthesis of proteins) Genetic code Post-translation Modification Lesson 4 Xenobiotics Lesson 5 Types of miutation	✓ describe the molecular basis of replication, transcription and translation processes ✓ discuss the flow of genetic information ✓ discuss gene regulation ✓ describe the occurrences of mutagenesis ✓ Identify xenobiotics	Powerpoint presentation Interactive discussion Video clip	Illustrating the central dogma of molecular biology Tracing protein synthesis Constructing the genetic code table Interrelating the flow of	Worksheet Recitation/ Quiz Exam

				informatio n, gene expression and mutation	
CO4: P CO5: U CO6: Li	apriculture, medicine, pharmace resent awareness of major issues computers as information arist, evaluate, and use primary siscuss issues and formulate chequidal communities Module 11. Nucleic Acid Biotechnology Techniques Lesson 1 Purification and Detection of Nucleic Acids Lesson 2 Cloning and Genetic Engineering Lesson 3 Polymerase Chain Reaction and DNA Fingerprinting Lesson 4 DNA Sequencing	cy, and allied fields. lies at the forefront of b and research tools in bio ources of biochemical i	iochemistry. ochemistry. information	and mutation ons in the field	
		fundamentals of polymerase chain reaction and summarize its applications Identify and appraise the broad scope of biotechnology applications in the market today			

12. Life-long Learning Opportunities

* VSUEE/VC - VSU E-Learning Environment/ Virtual Classroom

The student will be able to explain the role of metabolic pathways in the occurrence of metabolic/genetic diseases and the importance of drug discovery and development for prophylactic/therapeutic purposes.

Vision: Mission:

13. Contribution of Course to Meeting the Professional Component (%) General Education:______% Basic Education (Foundation): ______% Professional Education (Major Field): 100%

14. References and Other Learning Resources

A. Textbooks

Berg, J.M., Tymoczko, J.L., Gatto, GJ and Stryer, L. (2015) Biochemistry 8th ed. W.H. Freeman (or later edition)

Campbell, M.K. and Farrell, S.O. (2014) Biochemistry 8th ed., Brooks Cole (or later edition).
Mathews, C.K., van Helde, K.E., Appling, DR, Anthony-Cahill S.J. (2012) Biochemistry 4th ed.
Benjamin Cummings (or later edition)

Nelson, D.L. and Cox, M.M. (2012) Lehninger Principles of Biochemistry 6th ed. W.H. Freeman (or later edition)

Pratt, CW and Cornely, K (2013) Essential Biochemistry, 3rd ed. Wiley (or later edition) Voet, D. and Voet, J.G. (2010) Biochemistry 4th ed. John Wiley & Sons (or later edition)

B. References

Alberts, B., Johnson, A., Lewis, J (2014) Molecular Biology of the Cell 6th ed. Garland Science (or later edition)

Karp, G. (2013) Cell and Molecular Biology: Concepts and Experiments 7th ed. Wiley (or later edition)

Lodish, H., Berk, A., Kaiser, CA, Krieger, M., Bretcher A., Ploegh, H., Amon, A., Scott, MP (2012) Molecular Cell Biology 7th ed. W.H. Freeman (or later edition)

The National Center for Biotechnology Information, National Library of Medicine, National Institute of Health USA www.pubmed.gov or <a href

C. Other Learning Resources

Open Educational Resources/Websites:

: http://serc.carleton.edu/microbelife/research_methods/genomics/replication.html

Videos:

https://www.youtube.com/watch?v=rXzN89I4 Yk https://www.youtube.com/watch?v=TNKWgcFPHqw https://www.youtube.com/watch?v=bKlpDtJdK8Q https://www.youtube.com/watch?v=sX6LncNjTFU https://www.youtube.com/watch?v=gG7uCskUOrA https://www.youtube.com/watch?v=kmrUzDYAmEI https://www.youtube.com/watch?v=MvuYATh7Y74 https://www.youtube.com/watch?v=rA8MUR4pqNE https://www.youtube.com/watch?v=2JUu1WgidC4 https://www.youtube.com/watch?v=ezfwgmKC9Uc https://www.youtube.com/watch?v=uM1t0mWXU30 https://www.youtube.com/watch?v=CHJsaq2lNjU https://www.youtube.com/watch?v=8FqlTslU22s https://www.youtube.com/watch?v=ulut0oVWCEg https://www.youtube.com/watch?v=RN81h85V6D4 https://www.youtube.com/watch?v=joZ1EsA5_NY https://www.youtube.com/watch?v=KfvYQgT2M-k

https://www.youtube.com/watch?v=NDIJexTT9j0

15. Course Assessment and Evaluation

The performance of students will be assessed and evaluated based on the following:

50% Midterm + 50% Final Term = 100% (Overall Final)

Item No.	Assessment Tasks	Percentage Contribution (1)	No. of Times in the Semester (2)	Individual Task % Contribution (1/2)
1	Worksheets/Learning Tasks	20	11	1.82%
2	Recitation/Quiz	10	32	0.31%
3	Chapter exams	30	4	7.50%
4	Term exams	30	2	15.00%
5	Video clip	10	1	10.00%

COs	Assessment Tasks	Weight in Percent	Minimum Average for Satisfactory Rating	Target and Standards
COs 1-7	Worksheets/Learning Tasks Recitation/Quiz Chapter Exams Term Exams Video Clip	20 10 30 30 10	60%	At least 70% of the students have at leas 60% score
	TOTAL	100%		

Grading System (% Passing: 60%)

Range	Grade	Range	Grade
97-100	1.00	65-69	2.75
93-96	1.25	60-64	3.00
89-92	1.50	59 below	5.00
85-88	1.75		
80-84	2.00		
75-79	2.25		
70-74	2.50		

16. Course Policies

- The students should participate in the discussion.
- Quizzes are given real time either announced or unannounced and will open every after a topic has been discussed.
- Worksheets will be done individually.
- Submission of worksheets will be done thru the VSUEE/VSU email account or to the office.
- Chapter exams, midterm exam and final exam will be given face to face.
- A video clip depicting metabolism of biomolecules will be submitted during the last week of classes.

17. Course Materials and Facilities Available

- 1. Powerpoint presentations
- 2. Handouts
- 3. Video clips
- 4. Laptop
- 5. Google meet account

Revision number	Date of Revision	Date of Implementation	Highlights of Revision	Revised by
1	February 7, 2022	February 15, 2022	Use of the most recent OBE syllabus template;	Dr. Ma. Theresa P. Loreto
2	February 17, 2023	February 20, 2023	Updated course information, assessment task, other learning resources, and course policies for face to face learning modality	Dr. Elizabeth S Quevedo

19. Preparation	1		
Dennared by	Name	Signature	, Date Signed
Prepared by	Elizabeth S. Quevedo	Signature	2/11/2023

IV. INSTRUCTOR/PROFESSOR INFORMATION

Name of Instructor/Professor	ELIZABETH S. QUEVEDO
Office and Department	Department of Pure and Applied Chemistry
3. Telephone/Mobile Numbers	09178905658
4. Email Address	elizabeth.quevedo@vsu.edu.ph
5. Consultation Time	TBA

20. Department Instructional Materials Review Committee:

Committee	Name	Signature	Date Signed
Member:	MARIA ROBELYN A. INSIK	manuf	2/14/2023
Member:	VIVIAN P. LINA	Uplan	2/17/2023
Chairperson:	Dr. FELIX M. SALAS	The	2/21/2023

Vision: Mission:

	Name	Signature	Date Signed
Verified by:	MA. THERESA P. LORETO College Dean		
Validated by:	NANCY D. ABUNDA Head, IMD		

Note:

- 1) The number of POs will depend on each degree program offered
- 2) COs and Relationship to POs
 - a. (I) Introductory an Introductory Course to an outcome
 - (E) Enabling an Enabling Course or a course that strengthens the outcome
 - c. (D) Demonstrated a Demonstrative Course or a course demonstrating an outcome.

REMINDER:

- The author should not be part of the DIMRC.
- If the author is the Department Head, he/she will be replaced by another chairperson from among the senior faculty members.
- 3. "If the author is the College Dean, the Head of Instructional Materials Development will approve.
- 4. Follow the next higher supervisor, no same person
- For the component campuses, if the author is the College Dean, the Director for Academic Affairs will approve.
- If the author is the Department Head and at the same time the College Dean, the Director for Academic Affairs will be the Chairperson of the DIMRC, and the Chancellor will approve it.

(3) Distribution of copies: OHIMD, Department, Faculty

prescribed by CHED

TEACHING-LEARNING

DEPARTMENT OF PURE & APPLIED CHEMISTRY

Visca, Baybay City, Leyte, PHILIPPINES Telefax: + 63 563-7747

Email: dopac@vsu.edu.ph Website: www.vsu.edu.ph

EVALUATION OF OUTCOMES-BASED EDUCATION (OBE) COURSE SYLLABUS

Chem 138 - Biochemistry II 2nd Sem Semester and A.Y. 2022 - 2023

: ELIZABETH S. QUEVEDO

Department/Institute : Dept of Pure and Applied Chemsitry

	CRITERIA	Complied	Partially Complied	Not Complied	Remarks
FORM	AT				
1)	The OBE course syllabus follows the university- prescribed format	/			
2)	The course syllabus covers the required number of weeks in one academic term	1			
3)	Course policies and grading system are clearly defined	1			
4)	The syllabus is designed to align	with the CMC	prescribed o	curriculum in	relation to:
a.	Program Educational Objectives to VSU Vision, Mission, and Quality Policy Statement	1			
b.	Program Outcomes to Program Educational Objectives	/			
C.	Course Outcomes to Program Outcomes	1			
CON	TENT				
_	Learning outcomes are clearly articulated (Specific, Measurable, Attainable, Realistic, Time-bounded (SMART) and anchored on Bloom's Taxonomy of Objectives)	/			
2)	Course coverage completely follows the course description	/			
3)	Topics/lessons are arranged in a logical – sequence	1			
4)	Gender-sensitivity and values education are integrated in the syllabus whenever applicable	1			
5)			1		

1)	Teaching-learning activities are:			
	a. varied and relevant	/		
	b. outcomes-based	1		
	c. encourage active learning	/		
	develop the students' critical – thinking skills and reflective judgment	1		
LEAR	NING ASSESSMENT			
1)	Learning outcomes and methods of assessment are aligned	1		
2)	Assessment methods used are varied and relevant	/		
3)	Schedule and frequency of assessment, and expected outputs are clearly defined	1		

General Recommendation (Pls. check):

/	APPROVED for use	
	Needs to be REVISED (please see comments)	

Department Instructional Materials Review Committee:

Committee	Name	Signature	Date Signed	
Member:	VIVIAN P. LINA	liplon	2/17/23	
Member:	MARIA ROBLEYN A. INSIK	Manuel	2/9/2023	
Chairperson	FELIX M. SALAS	- BM	2/21/2023	

	Name	Signature	Date Signed
Verified by 1/2:	MA. THERESA P.LORETO College Dean		
Validated by ^{2/} :	NANCY D. ABUNDA Head, IMD		

- 1/ Means of Verification: Ratings on Individual evaluation sheets of the DIMRC members
- 2/ Means of Validation: Final action of the College Dean

REMINDER:

- The author should not be part of the DIMRC.
- *If the author is the Department Head, he/she will be replaced by another chairperson from among the senior faculty members.
- 3. **If the author is the College Dean, the Head of Instructional Materials Development will approve.
- 4. Follow the next higher supervisor, no same person
- For the component campuses, if the author is the College Dean, the Director for Academic Affairs will approve.
- If the author is the Department Head and at the same time the College Dean, the Director for Academic Affairs will be the Chairperson of the DIMRC, and the Chancellor will approve it.